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ABSTRACT 

 

 
MODELING DYNAMIC STALL FOR A FREE VORTEX WAKE 

MODEL OF A FLOATING OFFSHORE WIND TURBINE 
 

 

SEPTEMBER 2014 

 

 

EVAN M. GAERTNER, B.Sc., JAMES MADISON UNIVERSITY 

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Matthew A. Lackner  

 

Floating offshore wind turbines in deep waters offer significant advantages to onshore 

and near-shore wind turbines.  However, due to the motion of floating platforms in response to 

wind and wave loading, the aerodynamics are substantially more complex.  Traditional 

aerodynamic models and design codes do not adequately account for the floating platform 

dynamics to assess its effect on turbine loads and performance.  Turbines must therefore be over 

designed due to loading uncertainty and are not fully optimized for their operating conditions.  

Previous research at the University of Massachusetts, Amherst developed the Wake Induced 

Dynamics Simulator, or WInDS, a free vortex wake model of wind turbines that explicitly 

includes the velocity components from platform motion.  WInDS rigorously accounts for the 

unsteady interactions between the wind turbine rotor and its wake, however, as a potential flow 

model, the unsteady viscous response in the blade boundary layer is neglected.  To address this 

concern, this thesis presents the development of a Leishman-Beddoes dynamic stall model 

integrated into WInDS.  The stand-alone dynamic stall model was validated against two-

dimensional unsteady data from the OSU pitch oscillation experiments and the coupled WInDS 
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model was validated against three-dimensional data from NREL’s UAE Phase VI campaign.  

WInDS with dynamic stall shows substantial improvements in load predictions for both steady 

and unsteady conditions over the base version of WInDS.  Furthermore, use of WInDS with the 

dynamic stall model should provide the necessary aerodynamic model fidelity for future research 

and design work on floating offshore wind turbines. 
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CHAPTER 1 

INTRODUCTION 
 

Floating offshore wind turbines (FOWTs) are a promising technology poised to provide 

access to superior offshore wind resources, while avoiding competition of use issues prevalent 

onshore and near-shore.  However, floating platforms are a major technological leap, even 

compared to fixed bottom offshore wind turbines.  This is in part due to additional platform 

motion which adds complexity to the unsteady aerodynamic operating environment of FOWTs.  

The existing techniques for modelling unsteady aerodynamics of FOWTs are currently 

inadequate.  

To address these concerns, previous work by Sebastian (2012) developed the Wake 

Induced Dynamics Simulator (WInDS).  WInDS explicitly accounts for platform kinematics 

using a free vortex wake method.  While the model accounts for rotor and platform dynamics and 

their time-varying impact on the wake development, unsteady aerodynamics are not accounted 

for at the blade section level. Instead, the current version of WInDS assumes static sectional 

aerodynamics via two-dimensional airfoil lookup tables, and so while rotor-scale unsteadiness is 

modeled in WInDS, it is ignored at the blade section scale.  Modeling the physics of the unsteady 

flow at the blade section scale should improve the accuracy of load predictions in WInDS, 

therefore indirectly improving wake dynamics predictions and overall enabling more accurate 

assessment of the aerodynamic behavior of FOWTs.  In an effort to improve the understanding of 

the unsteady aerodynamics of FOWTs, this thesis has the following goals: 

 Develop and validate a Leishman-Beddoes type dynamic stall model in Matlab 

 Interface the dynamic stall model with WInDS 

 Validate the coupled model 

 Analyze the dynamics stall behavior of FOWTs using the coupled model 
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Chapter 2 provides relevant background information on offshore wind turbines, wind 

turbine aerodynamics, and dynamic stall.  Chapter 3 outlines the theory and mathematical 

representation of a Leishman-Beddoes dynamic stall model.  Chapter 4 discusses the 

implementation of the Leishman-Beddoes dynamic stall model and validation against two-

dimensional data.  Chapter 5 discusses coupling the dynamic stall model with WInDS, validation 

of the combined code, and sample model results for FOWTs.  Finally, Chapter 6 summarizes 

conclusions and future research opportunities. 
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CHAPTER 2 

BACKGROUND 
 

2.1 Offshore Wind 

The best onshore wind resources in the United States (U.S.) are generally found on the 

plains in the interior of the country or on mountain ridges, shown in Figure 2.1.  Development of 

these resources can be difficult because the plains have low population density and therefore low 

electricity demand.  Development of mountain ridges can be challenging due to competition for 

use and view shed concerns. 

 
Figure 2.1: United States wind resource map 

Offshore wind turbines are a promising application to avoid these issues due to strong 

offshore wind resources and proximity to population dense load centers.  Musial and Ram (2010) 

estimated that there are sufficient wind resources within 50 miles of shore to provide four times 

the electrical demand of the United States.  Additionally, offshore wind turbines can be larger 



www.manaraa.com

4 

 

than onshore machines due to simplified transportation and have higher efficiency due to reduced 

noise concerns. 

Despite the potential, there are currently no offshore wind farms off the coast of the U.S. 

due to technical and political challenges.  An offshore operational environment is substantially 

more complex due to wave loading, access issues, and additional expense for installation and 

maintenance.  As more of these concerns are addressed, the cost of offshore wind energy will 

decrease and development will accelerate, as outlined by Kaiser and Snyder (2010) and Tegen, et 

al. (2012).  

2.1.1 Floating offshore wind turbines 

International offshore wind energy development has largely been limited to depths less 

than 30 m, the limit for monopile foundations.  Shallow depths are typically close to the shoreline 

where viewshed concerns can prevent development.  Furthermore, Musial and Ram (2010) 

estimated that 75% of the U.S. offshore wind resource is at depths greater than 30 m. 

FOWTs can provide access to deeper waters, mitigating competition of use concerns and 

expanding the potential area for development.  The technology also has the potential to reduce the 

cost of energy through tow-out installation of fully assembled systems rather than offshore 

assembly using specialized lift vessels.   A wide variety of concepts have been proposed, however 

all designs attain stability though a combination of ballast, buoyancy, and mooring line tension, 

as shown in Figure 2.2.  Yu and Chen (2012) provide an overview of the various FOWTs 

concepts under development.  
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Figure 2.2: FOWT stability concepts (Jonkman, 2007) 

2.1.2 Modeling FOWTs 

Wind turbines operate in complex unsteady flow fields.  The underlying aerodynamics 

are not fully understood leading to significant limitations to the state-of-the-art aerodynamic 

models.  This was clearly highlighted in a blind comparison conducted by the National 

Renewable Energy Laboratory (NREL).  Experimental data from the NREL Unsteady 

Aerodynamics Experiment (UAE) at the NASA Ames 80 x 120 ft. wind tunnel were utilized.  

Twenty independent “blind” sets of predictions were made by the participants, using a variety of 

models.  Simms, et al. (2001) showed the results range from 60% under-prediction to 150% over-

prediction.  Even in the simplest case in a controlled environment, state-of-the-art models fail to 

accurately predict wind turbine aerodynamic performance.   

FOWTs operate in even more complex conditions than fixed bottom turbines due to 

additional platform motion.  Floating platforms experience 6 degrees of freedom in response to 
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wind and wave loading, depicted in Figure 2.3.  This additional motion results in cyclical loading 

that can shorten the lifetime of wind turbine components or lead to dynamic instabilities.  

Additionally, platform motion can cause rapid unsteady wind velocity changes at the blade 

section level.  Sebastian and Lackner (2011) concluded that this would result in increased 

occurrence and severity of dynamic stall.  Sebastian (2012) and Sebastian and Lackner (2012) 

also found that the complex dynamic inflow conditions due to rotor-wake interactions from 

platform motion violated the underlying assumptions of many traditional modelling techniques 

such as Blade Element Momentum Theory. 

 
Figure 2.3: Rotational and translational degrees of freedom for FOWTs (Sebastian, 2012) 
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2.2 Wind Turbine Aerodynamics 

2.2.1 Aerodynamic properties of airfoils 

An airfoil is a structure that generates lift as a result of favorable pressure gradients as it 

moves through a fluid.  Experimentation with airfoil shapes and properties began prior to the 

advent of flight, but the first comprehensive study was conducted by the National Advisory 

Committee for Aeronautics (NACA) in the 1930s and 1940s, summarized in Abbott (1949).  

Figure 2.4 provides the nomenclature and typical shape of subsonic airfoils. 

 
Figure 2.4: Airfoil nomenclature (Manwell, et al. 2002) 

Figure 2.5 shows the components of the resultant force on an airfoil in a fluid flow.  The 

normal force and axial force (also referred to as the chord or tangential force) are perpendicular 

and parallel with the airfoil chord line respectively and lift and drag are perpendicular and parallel 

to the free stream velocity respectively.  Equations 2.1 and 2.2 give the geometric relationships 

for transferring from normal and axial force to lift and drag. 

   cos sinL N A           [2.1] 

   sin cosD N A           [2.2] 
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Figure 2.5: Components of the resultant force on an airfoil in a fluid flow (Anderson, 2007) 

 

The aerodynamic properties for an airfoil shape can be experimentally determined in a 

wind tunnel.  Under steady conditions, i.e. constant wind speed and airfoil orientation, the lift 

coefficient increases linearly with angle of attack under attached flow.  At a critical angle, viscous 

forces cause flow reversals and recirculation along the boundary layer on the suction side 

resulting in flow separation.  The airfoil experiences decreased lift and an increased drag under 

separated flow at high angles of attack.  This phenomenon is known as stall and the angle of 

attack where stall begins is known as the static stall angle.  Figure 2.6 shows a typical steady lift 

curve.  

 
Figure 2.6: CL-alpha curve (Anderson, 2007) 
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2.2.2 Potential flow modeling 

2.2.2.1 Potential flow 

Potential flow is a fluid dynamics analysis technique made possible by three key 

simplifying assumptions: 

 The flow is incompressible.  This can be expressed by the continuity equation, Equation 

2.3.  This assumption is valid for wind turbine applications due to the low Mach number 

flow fields. 

0 U           [2.3] 

 The flow is irrotational, expressed in Equation 2.4.  Viscous forces are only significant 

for a thin boundary layer around an airfoil operating in subsonic flow.  Therefore for 

external flows around wind turbines, this is an acceptable assumption. 

0 U           [2.4] 

 The flow is inviscid.  Due to the large Reynolds numbers for typical wind turbine flow 

fields, the inertial forces are significantly larger than viscous forces, allowing viscous 

effects to be neglected. 

Equation 2.5 gives the vector identity which states that the curl of the gradient of a scalar 

function is zero.   By combining Equations 2.4 and 2.5, Equation 2.6 gives a new expression of 

the velocity in terms of  , the velocity potential.  The velocity potential function shows that 

there exists some scalar function where its gradient is the velocity field. 

  0             [2.5] 

U           [2.6] 
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Taking the gradient of the velocity potential function and applying incompressibility 

yields Laplace’s equation, 2.7.  The main advantage of Laplace’s equation is its linearity.   This 

allows complex flows to be modelled by the superposition of multiple elementary flow solutions. 

2 0            [2.7] 

 

2.2.2.2 Vortex filaments 

In aerodynamic modeling, the elementary solution to Laplace’s equation for vortex flows 

is particularly useful.  A vortex is a flow where the velocity is constant on circular stream lines, 

decreasing in magnitude with distance from the origin.  Equation 2.7 is the velocity profile of a 

potential vortex where r is the radius from the origin and Γ is the circulation strength as given by 

Anderson (2005). 

 
2

U
r





            [2.7] 

The extension of potential vortices into three-dimensions is the vortex filament, a closed 

or infinite curve with concentrated vorticity of constant circulation strength along its length.  The 

filament induces a velocity field around it.  The Biot-Savart law can be used to calculate the 

induced velocity at any given point in the flow field, as shown in Figure 2.7, where a segment of 

the straight line vortex filament L induces velocity on the point P.  Equation 2.8 is an expression 

of the discretized Biot-Savart law for the velocity at point P as given by Sebastian (2012). 
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Figure 2.7: Vectors associated with the discretized Biot-Savart law (Sebastian, 2012) 

  

 
1 2 1 2

1 2 1 2 1 2
4

induced

r r r r
U

r r r r r r

 


 
       [2.8] 

2.2.2.3 Lifting line theory 

The true utility of vortex filaments is given by the Kutta-Joukowski theorem, Equation 

2.9, which expresses the lift per unit span on a body in terms of the circulation about the body.  

This allows a two-dimensional flow about an airfoil to be modeled as a potential vortex or a 

three-dimensional finite wing to be modelled with vortex filaments.   

 
21

2
lL U C cdy U    

           [2.9] 

Classical lifting-line theory was developed by Ludwig Prandtl to model finite wings.  A 

bound vortex filament is placed on the quarter-chord of the wing and extends from wing tip to tip, 

or tip to root in the case of a wind turbine blade.  However, vortex filaments must be infinite in 

length or bound according to the Helmholtz theorem, so two trailing vortex filaments of equal 

strength are placed at the wing end points, parallel to the free steam flow velocity.  This 

configuration is known as a horseshoe vortex and it is closed by a starting vortex filament, of 

equal strength to the bound vortex and parallel to the trailing edge, which is shed and convected 

downstream by the ambient flow.  The trailing and shed vortices all induce velocity on the bound 

vortices according to the Biot-Savart law.  To model span-wise variations in lift along a wing, 
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multiple or an infinite number of horseshoes vortices can be superimposed on the same lifting 

line, resulting in a sheet of trailing vortices shown in Figure 2.8. 

 
Figure 2.8: Superposition of vortex filaments to form a lifting-line and trailing vorticity (Leishman, 2006) 

 

To model unsteady changes in lift, the circulation strength along the lifting line span can 

change with time.  As a result, shed vortex filaments equal to the change in the bound vorticity 

with respect to time are released into the wake.  Trailing and shed vortices due to spatial and 

temporal changes in bound vorticity, respectively, dynamically model the wake as a lattice 

structure of vortex filaments. 

An extension of lifting line theory is the free vortex wake model.  Using Lagrangian 

markers, vortex filaments are convected downstream by the free stream fluid velocity and the 

self-induced velocity of the wake.  This allows the structure of the wake to evolve with time as 

shown in Figure 2.9. 
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Figure 2.9: Evolution of the vortex lattice wake structure over time (Sebastian and Lackner, 2012); (a) t0, 

(b) t1, (c) t2, (d) t3 

 

 

 

Difficulties can arise when applying vortex models because the induced velocity 

approaches infinity near the vortex origin.  This is a result of potential vortices being over 

idealized while true vortices experience viscous shear forces that significantly influence the 

velocity profile near their origin.  Through empirical observations, vortex core models have been 

developed to account for the discrepancy between potential and physical vortices.  Additional 

corrections are also applied to account for vortex filament strain and stretching as a result of the 

freely convecting wake.  These topics are beyond the scope of this work, but are discussed in 

detail by Leishman (2006) and Sebastian (2012). 
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2.2.3 Wake Induced Dynamics Simulator 

To address the need for more sophisticated methods for modeling the aerodynamics of 

FOWTs, the Wind Energy Center at the University of Massachusetts, Amherst, developed the 

Wake Induced Dynamics Simulator (WInDS) through the work of Sebastian (2012) and updates 

by deVelder (2014).  WInDS is a free vortex wake method potential flow code written in Matlab, 

and used to model the aerodynamic loads on operating wind turbines and their wake 

development.  The main advantage of this modeling technique is the ability to superimpose 

velocity contributions from different modes of forcing.  The local velocity at a blade filament can 

include contributions from the free stream, induced velocity from the wake, and velocity from the 

platform motion, as shown in Equation 2.10.  Thus, platform motion and off-axis flow are 

explicitly accounted for in the aerodynamic model.  

 induced platformU U U U          [2.10] 

The main WInDS algorithm is shown in Algorithm 1, as given by Sebastian (2012).  

During simulation time stepping, the induced velocities due to wake effects are calculated to yield 

the dynamic loads due to rotor-wake interaction.  Structural motions of the platform, turbine, and 

rotor are prescribed, either by user inputs or by importing output data from a FAST simulation.  

FAST (Fatigue, Aerodynamics, Structures, and Turbulence) is a widely used computer-aided 

engineering tool developed by NREL used for time-marching simulations of operating wind 

turbines, outlined in detail by Jonkman and Buhl (2005) and Jonkman (2007).   

Since WInDs is a potential flow model, the flow is assumed to be inviscid, 

incompressible, and irrotational.  Consequently, blade section level viscous effects cannot be 

modeled.  Coupling the model with a dynamic stall module has the potential to improve the 

accuracy of the bound vortex strength calculations and thus the accuracy of the global model. 
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Algorithm 1: WInDS Algorithm 

 Data: Turbine geometry and load conditions 

 Results: Turbine loads and wake geometry 

1 Import turbine geometry and load conditions 

2 Determine position of blade nodes because of platform, turbine, and rotor 

motions 

3 Compute velocity of blade nodes via rotation sequence 

4 Determine initial values for span-wise Cl and Γbound using Blade Element 

Momentum theory 

5 for all time steps 

6  Compute Γshed and Γtrail 

7  Compute vortex core size, including filament strain effects 

8  Compute induction at all wake nodes via Biot-Savart law 

9  Convect wake nodes via numerical integration 

10  Compute new Γbound via iteration on Kutta-Joukowski theorem (Algorithm 2) 

 

2.3 Dynamic Stall 

2.3.1 Sources of unsteadiness 

Robinson, et al. (1995), Huyer et al. (1996), and Sebastian and Lackner (2012) showed 

that wind turbines operate in complex, unsteady flow fields at all times.  This results in significant 

deviation from the expected aerodynamic response from steady wind tunnel tests.  Time varying 

wind at the blade element can be caused by rotor yaw, ambient turbulence, blade flapping and 

vibration, and induced wake effects, such as tower shadow.  Since wind turbines operate at low 

tip speed ratios, the incident wind is a significant portion of the flow velocity seen by a blade 

element, especially for portions of the blade span closer to the root.  As a result, sudden changes 

in the wind speed or direction can cause dramatic changes in the angle of attack.  Figure 2.10 

shows changes in the local wind velocity for a blade element as a result of unsteady effects. 
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Figure 2.10: Sources of unsteady forcing on a blade element (Leishman, 2006) 

 

It can be useful to quantify the unsteadiness in a flow or forcing term.  This is 

accomplished using the reduced frequency (k) shown in Equation 2.1.  The variable ω is the 

angular frequency of oscillatory changes.  Table 2.1 classifies the unsteadiness of flows based on 

the reduced frequency according to Leishman (2006). 

 
2

c
k

V


          [2.1] 

Table 2.1: Reduced frequency ranges 

Range Flow Type 

k = 0 steady 

0 < k ≤ 0.05 quasi-steady 

0.05 < k ≤ 0.2 unsteady 

k ≥ 0.2 highly unsteady 

 

2.3.2 Dynamic stall 

McCroskey et al. (1976) first defined dynamic stall as the time varying phenomenon 

where flow separates from a lift generating structure causing it to stall.  It occurs whenever an 

airfoil undergoes a time varying change in motion or incident flow, resulting in the effective 

angle of attack exceeding the static stall angle.  Flow separation is delayed to a higher angle of 

attack than the static case, allowing greater lift to be achieved, as observed by Kramer (1932).   
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Flow separation is initiated by a vortical disturbance shedding from the leading edge of 

the airfoil.  The vortex convects rapidly down the chord resulting in separated flow.  While the 

vortex is in the vicinity of the suction side of the airfoil, additional lift is induced.  Additionally, 

the center of pressure moves toward the trailing edge as the vortex convects down the chord.  

This results in a nose-down pitching moment of the blade section which can cause undesirable 

torsional loading, because flow separation is not uniform over the full length of the blade.  

Aerodynamic damping can also be reduced due to separated flow, potentially resulting in blade 

instabilities, referred to as stall flutter.  Dynamic stall is therefore an important design 

consideration since peak loads often occur during flow separation and increased blade vibration 

and stresses could potentially exceed structural fatigue limits. 

Section 2.2.3.1 discusses the flow morphology in greater detail and Section 2.2.3.2 will 

discusses modelling methods for dynamic stall.  Chapter 3 discusses implementation of the 

Leishman-Beddoes dynamic stall model in detail. 

2.3.3.1 Flow morphology 

Dynamic stall can be divided into five stages as shown in Figure 2.11.  Leishman (2006) 

has provided a useful overview of this process. 
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Figure 2.11: Progress of dynamic stall (Leishman, 2006) 

At Stage 1, the static stall angle is surpassed, yet flow separation is delayed and lift 

continues to increase with angle of attack.  This can be explained in part by classical 2-D thin 

airfoil theory and Theodorsen’s Theory (1935).  When circulation about an airfoil changes (i.e. 

lift changes), an equal and opposite circulation is shed into the wake at the trailing edge.  This 

counter-circulation in the wake induces a down washing force on the airfoil which delays vortex 

formation.   

In addition to wake effects, leading edge pressure and pressure gradients are reduced by a 

positive pitch rate compared to the steady case, a well know phenomenon studied by Ericsson 

(1967), Carta (1971), Ericsson and Redding (1972), Johnson and Ham (1972), McCroskey 

(1973), and Beddoes (1978).  As the airfoil pitches away from the incident flow, the airfoil 

camber is effective changed.  Adverse pressure gradients are also curbed by the development of 
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unsteady flow reversals in the boundary layer according to work by McAlister and Carr (1979).  

A combination of these effects creates a delay in flow separation beyond the static stall angle. 

Once the pressure gradient at the leading edge become sufficiently high, viscous shear 

forces cause a vortex to form as the flow folds in on itself.  This was first modelled by Ham 

(1968) and represents Stage 2 in Figure 2.11.  The vortex is unstable and quickly convects down 

the airfoil at approximately 1/3 to 1/2 the free stream velocity during Stage 3.  The center of 

pressure moves toward the trailing edge as the vortex moves aft.  Additional lift is provided by 

the vortex until it passes the trailing edge at which point the flow is fully separated and Stage 4 

begins.   The airfoil undergoes a sudden drop in lift, a peak nose-down pitching moment, and high 

drag.   

As the angle of attack decreases below the static stall angle, flow begins to reattach.  

However, this process experiences a similar lag as flow detachment as discussed in Green and 

Galbraith (1995).  The delay is brought on by the reorganization of the flow on the suction side as 

flow reattaches.  A negative pitch rate also causes decreased lift, opposite of the effect described 

in Stage 1.  The angle of attack must therefore decrease below the static stall limit for flow to 

become fully attached.  Once reattached, Stage 5 is reached and the cycle is completed.  Delays in 

flow detachment and reattachment result in a hysteresis effect, shown in the lift plot in Figure 

2.11, that is characteristic of dynamic stall. 

2.3.3.2 Modeling dynamic stall 

Due to the nonlinear, transient, viscous forces during flow separation, dynamic stall can 

only be rigorously modeled by numerically solving the Navier-Stokes equation.  This makes 

computational fluid dynamics (CFD) with sophisticated turbulence models the ideal method to 

predict dynamic stall onset and effects.  However due to the complexity of the problem, current 

models are insufficiently accurate to justify the large computational expense.  According to Sims, 
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et al. (2001), as the cost of computational resources continue to decrease, CFD models will more 

accurately capture the physics of dynamic stall.  Even if these models yield improved results, the 

large computational expense and long run-times will still make CFD impractical for design work 

which requires extensive simulations and load-cases.   

Since dynamic stall is an important consideration in calculating aerodynamic loads and 

for blade and rotor design, less precise methods have been developed that employ simplified 

physical representations augmented with experimental data from 2D unsteady airfoil experiments.  

These semi-empirical or engineering level models are a balance between accurate load 

predictions and computational complexity.  They vary widely by the methods they employ and 

the amount of experimental data required.  Leishman (2002, 2006) has written an overview of 

these modeling techniques. 

Semi-empirical methods can offer significant improvements in model performance, but 

they have several inherent weaknesses.  Typically, empirical coefficients are derived using 

parameter ID methods that are only accurate over the range of Mach numbers, Reynolds numbers, 

excitation frequencies, and airfoil shapes represented in the experimental data.  Furthermore, their 

accuracy is dependent on the quality of the experimental data, which can be problematic since 

airfoil experiments are notoriously difficult to repeat between different experimental setups, 

discussed by Tangler (2002).  This makes validation of these models essential and care should be 

taken when applying them to problems outside their design conditions.  
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CHAPTER 3 

LEISHMAN-BEDDOES DYNAMIC STALL MODEL 
 

3.1 Overview 

The Leishman-Beddoes (L-B) method is a commonly used semi-empirical model of 

dynamic stall, developed by Beddoes (1983), Leishman and Beddoes (1986, 1989), Leishman 

(1989), and Tyler and Leishman (1992).  At a given blade element, the wind velocity is the main 

input and the aerodynamic loads are the output, allowing the dynamic model to replace 

experimental data table look ups.   The L-B model is based on simplified physical representations 

of the flow morphology.  The model is divided into four subsystems shown in Figure 3.1: 

unsteady attached flow, trailing edge flow separation, leading edge flow separation, and vortex 

shedding.  Representation of complex viscous effects are avoided through the use of empirically 

derived time constants from unsteady, 2-D oscillating or plunging wind tunnel experiments.  The 

subsequent sections outline the theory behind each subsystem and additional modelling 

considerations such as subsystem interaction. 

 
Figure 3.1: Dynamic stall flowchart (Leishman, 2002) 
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3.2 Unsteady Attached Flow  

Under attached flow conditions a blade element experiences dynamically changing 

aerodynamic loads due to unsteadiness in the flow field, motion of the airfoil, and induced forces 

from the wake.  An unsteady attached flow model is therefore a prerequisite to modeling dynamic 

stall.  Wagner (1925) derived an expression for the coefficient of lift, Cl, on a thin airfoil for a 

step change in angle of attack, α, in incompressible flow as 

     2
2

l

c
C t t s

V


           [3.1] 

Where δ(t) is the Dirac-delta function representing a step change and φ is the Wagner 

function which approximates the wake effects.  The Wagner function is determined based on s, 

the dimensionless distance traveled by the airfoil in semi-chords defined as 

 
0

2
t

s U t dt
c

            [3.2] 

The first term of Equation 3.1 represents the apparent mass while the second term 

represents the circulatory effects of the wake.  The Wagner function is determined using indicial 

response theory, which states that the response of a non-linear system to an arbitrary time-

dependent input can be calculated if the characteristic response of the system is known.  The 

indicial response of the system can be solved exactly for incompressible flow using a Duhamel 

integral for an arbitrary forcing function, shown in Equation 3.3. 

        
0

0

t
df

y t f t t d
dt

            [3.3] 

Where y(t) is the output of the system, f(t) is a general forcing function, and σ is time 

variable of integration.   Use of the Durhamel integral is based on the principle that the response 

of the system can be linearized and determined by the superposition of multiple indicial responses 
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to different modes of forcing. Unfortunately, analytical and numeric solutions to the Wagner 

function are too computationally intensive for most applications.  Rather, it may be replaced with 

an indicial exponential approximation of the form 

  1 2

1 21 b s b ss Ae A e             [3.4] 

Equation 3.4 was first used to approximate the Wagner function by Jones (1938, 1940) 

for specific cases and generally by Beddoes (1984).  The indicial coefficients A1, A2, b1, and b2 

are empirically derived by system identification methods from unsteady airfoil data.  Beddoes 

determined the normal force indicial response for the step changes in angle of attack (α) and non-

dimensional pitching rate ( /q c V ), Equations 3.5 and 3.6 respectively.  
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         [3.6] 

Where M is the Mach number and 21 M   .  The indicial functions for the 

circulatory terms are assumed to be equal, that is 

   
2 2

1 2

1 2, , 1 b s b sc c

qs M s M Ae A e 

             [3.7] 

Using Equation 3.7, the circulatory contribution to coefficient of lift can be expressed as 

a function of angle of attack in terms of the Duhamel integral.  This representation is shown in 

Equation 3.8 where 
nC


is the steady normal force curve slope for attached flow, 2π/radian under 

thin airfoil theory.  The Duhamel integral can be represented as an effective angle of attack, αe, 

which accounts for the flow history, Equation 3.9.   
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   c

n n eC t C t

         [3.9] 

Beddoes (1976, 1984) solved the Duhamel integral to express αe in terms of deficiency 

functions acting on the angle of attack, shown in Equations 3.10 to 3.12. 

 
ne n n nX Y            [3.10] 
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The non-circulatory added mass term is a result of the airfoil displacing fluid as it 

undergoes pitching and plunging.  For compressible flows, the non-circulatory term also accounts 

for the propagation of acoustical compression and expansion waves.  The indicial response 

functions for angle of attack and pitching rate, Equations 3.13 and 3.14, are represented by a 

single exponential function.   
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The literature typically expresses the exponential in these equation in terms of the time 

constants T’α and T’q.  For consistency with the subsequent equations however, kα and kq have 

been used which are related by 
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Lomax, et al. (1952) showed that the indicial response can be solved exactly.  Therefore 

the time constants can be solved for, resulting in Equations 3.15 and 3.16. 

   
1

2 2

1 1 2 20.75 1k M M Ab A b 
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To calculate the non-circulatory contribution to lift, the Duhamel integral is applied and 

rearranged in terms of a deficiency function that captures the time history of the flow, similar to 

the circulatory contribution.  Different forcing modes must be determined separately, in 

Equations 3.17 and 3.18 for angle of attack and pitch rate. 
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The K terms in Equations 3.19 and 3.20 are the rate of the forcing perturbations and K’ 

terms in Equations 3.21 and 3.22 are the deficiency functions. 
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Then by linear superposition in Equation 3.23, the total potential coefficient of normal 

force under attached flow is the sum of all circulatory and non-circulatory components. 

 
n q

p c nc nc
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 

           [3.23] 

3.3 Trailing Edge Flow Separation 

Gradual trailing edge flow separation can be observed before airfoils experience dynamic 

stall through leading edge vortex shedding.  This phenomenon is more pronounced for thicker 

airfoils, like those used in wind turbine applications.  Trailing edge flow separation results in non-

linear forces which must be accounted for if the model is to be applicable over a wide range of 

forcing conditions and airfoil shapes. 

In the L-B model, trailing edge flow separation is modelled using the Kirchhoff and 

Helmholtz Theory, outlined by Thwaites (1987).  Under steady conditions, Equation 3.24 is used 

to express normal force as a function of the trailing edge separation point, f, and angle of attack.  

The separation point is expressed as a ratio of position from the leading edge over chord length, 

where 1 is fully attached at the trailing edge and 0 is fully separated at the leading edge.  The 

chord force can similarly be expressed as Equation 3.25, where ηe is the recovery factor.  The 

recovery factor accounts for not all of the chord force predicted by potential flow being realized.  

It is calculated by resolving Equations 3.24 and 2.25 to find the coefficient of drag and 

performing a least squares fit to the static drag data.  Values for recovery factor vary between 

airfoils, typically in the range of 0.85 ≤ ηe ≤ 1.0. 
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The separation point can be approximated using the steady normal force tables by 

rearranging Equation 3.24 to solve for f as a function of normal force and angle of attack.  

Beddoes (1984) showed that an expression for f can then be found by using a two function piece-

wise least-squares curve fit, Equation 3.26.  The piecewise equation breaks at α1, the angle of 

attack where f = 0.7.  Figure 3.2 shows an example of the curve fitted to steady airfoil data for the 

S809 airfoil.    
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Equation 3.26 was developed primarily for helicopter applications which typically use 

thinner airfoils than wind turbines.  Gupta and Leishman (2006) suggested a three function piece-

wise fit (Equation 3.27) which often yields a better fit for wind turbine airfoils as shown in Figure 

3.2.  The second break point, α2, is determined by the location of the second normal force break 

point, which corresponds to a dramatic break in the chord force.  Figure 3.2 shows the associated 

lift and drag forces using Equation 3.27. 
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Figure 3.2: Example Kirchhoff and Helmholtz TE separation point curve fitting 

The accuracy of the reconstructed forcing coefficient curve fits from the separation point 

fit is one of the most sensitive model consideration.  It is critically important that the coefficients 

of normal and chord force are accurately predicted at angles of attack below the static stall angle 

because the trailing edge flow separation model has the largest contribution to lift and drag when 

leading edge flow separation has not occurred.  Since leading edge flow separation typically only 



www.manaraa.com

29 

 

occurs near the blade root, the trailing edge flow separation will dominate force predictions for 

the majority wind turbine blade, the majority of the time. 

Since Equation 3.24 is based entirely on steady data, it does not account for unsteady 

dynamic effects.  To determine the trailing edge separation point, the unsteady pressure response 

of the system must be determined.  Since calculating the pressure gradient would be too 

computationally expensive, an effective lift is calculated, C’n(t), referred to as the ersatz lift 

parameter in the literature.  It captures the overall effect of delayed flow separation as a result of 

pressure gradient dynamics.  The ersatz lift parameter is calculated by applying a deficiency 

function to the steady lift, shown in Equations 3.28 and 3.29.  In Equation 3.29, Tp is an 

empirically derived time constant determined by analyzing the leading edge pressure response.  

The ersatz lift parameter is also used in the leading edge flow separation module to determine the 

onset of dynamic stall, discussed in Section 3.4. 
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In Equation 3.30, the ersatz lift parameter is used to calculate an effective angle of attack 

where the steady leading edge pressure is equal to the unsteady case.  An effective separation 

point f’ is then calculated as a function of αf using Equation 3.26 or 3.27.   
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While f’ models the pressure gradient, the unsteady boundary layer response must also be 

accounted for.  In Equations 3.31 and 3.32, the unsteady trailing edge flow separation point is 

calculated by applying a deficiency function to the effective separation point.  The time constant 
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Tf is also determined experimentally by examining the unsteady development of the boundary 

layer. 

 
nn n ff f D            [3.31] 
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The unsteady normal and chord forces including trailing edge flow separation can finally 

be calculated using f” with the Kirchhoff and Helmholtz theory as shown in Equations 3.33 and 

3.34. 
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3.4 Leading Edge Flow Separation 

Experimental evidence has shown that dynamic stall is initiated at the leading edge 

through the development and separation of a vortical disturbance.  Predicting leading edge flow 

separation is therefore an essential part of the L-B dynamic stall model.   

Beddoes (1976, 1978, 1983) developed the criteria for predicting vortex shedding based 

on the pressure distribution at the leading edge.  Analysis of the leading edge pressure gradient 

suggested that once a critical pressure is reached, leading edge separation begins.  Beddoes 

assumed that the leading edge pressure can be correlated with the normal force on the airfoil.  A 

critical normal force coefficient, Cn1, can then be defined whereby vortex shedding is initiated 

once exceeded.  The ersatz normal force coefficient C’n is used to check this criterion since it 

already contains the response of the pressure gradient.  Therefore, when C’n > Cn1, vortex 

shedding is initiated.  Since experimental data for the unsteady pressure gradient is typically 
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unavailable, the critical normal force coefficient must be approximated by other means.  Using 

the steady airfoil tables, either the maximum normal force before stall or the normal force 

corresponding to pitching moment stall can be used for Cn1.   

After the flow separates, the Kirchhoff and Helmholtz formulation for chord force is no 

longer applicable.  The critical normal force can therefore be used to check if the flow has 

separated and modify the chord force expression.  Leishman and Beddoes (1986, 1989) 

introduced the piece-wise formulation shown in Equation 3.35 where Φ is defined by Equation 

3.36.  The variables D and F are constants equal to 2 and 1 respectively. 
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    [3.35]  

    
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The vortex begins forming prior to separation, after which it is convected down the airfoil 

into the wake.  While it is in the vicinity of the airfoil, it can be viewed as additional circulation 

that results in a contribution to lift.  Leishman and Beddoes (1986) assumed that the instantaneous 

contribution to accumulated vortex induced normal force can be approximated by the difference 

between the linearized unsteady circulatory normal force and the nonlinear lift determined using 

the Kirchhoff and Helmholtz theory, shown in Equation 3.37 and 3.38.   
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Until the vortex has passed beyond the airfoil and into the wake, it can continue to 

accumulate lift.  However, due to viscous forces and turbulent mixing, the vortex decays.  
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Equation 3.39 gives the total instantaneous normal force from the vortex, which decays the 

previous strength while adding additional increments if unsteadiness causes the vortex to continue 

to grow.  The vortex normal force time constant, Tv, is an empirically derived constant that 

controls the rate of vortex decay. 
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The vortex contributes significantly to the overall normal force so its location is 

monitored using τv, the non-dimensional vortex time parameter in semi-chords.  The vortex time 

parameter equals zero while forming at the leading edge and at the instant of separation.  At the 

trailing edge, τv equals Tvl, the empirically derived, non-dimensional time necessary for the vortex 

to convect down the airfoil.  Beddoes (1976) observed that the vortex travels at 1
3 to 1

2  the free 

stream velocity.  This is expressed non-dimensionally in semi-chords in Equation 3.40, recalling 

that Δs is the change in the non-dimensional distance travel by the airfoil in semi-chords.   
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Under leading edge separated flow, τv continues to increase until flow reattaches, at 

which point it is returned to zero.  For flow reattachment to occur, several criteria must be met: 

the ersatz normal force parameter must fall below the critical coefficient of normal force, the 

angle of attack must be decreasing, and the vortex must have passed the trailing edge.  These 

criteria are summarized below. 
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With the contribution of vortex lift calculated, the total unsteady coefficient of normal 

force can be calculated by superposition.  Equation 3.41 shows that the total normal force is the 
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combination of the non-circular normal force under attached flow, the circular normal force with 

trailing edge flow separation, and the induced normal force of the vortex.  This allows the model 

to be applicable under unsteady forcing conditions for attached flow, trailing edge flow 

separation, and dynamic stall. 
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Using the relations in Equations 2.1 and 2.2, the coefficients of lift and drag can then be 

found, shown in Equations 3.42 and 3.43 where Cd0 is the coefficient of drag when the steady 

Cl=0. 
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3.5 Subsystem Interaction 

When dynamic changes in the pressure and velocity gradients occur, they propagate 

through the entire flow field.  This leads to couplings between the different subsystems outlined 

in Sections 3.2 to 3.4.  Leishman and Beddoes (1986, 1989) and Leishman (1988) accounted for 

these interactions by modifying the empirical time constants at certain stages of the dynamic stall 

process.   Section 3.5.1 describes modifications to previous equations to allow time constant 

modification and Section 3.5.2 provides the algorithmic logic for changing the time constants. 

3.5.1 Adapted equations for time constant modification 

To keep the model generalized for a wide range of application, only the boundary layer 

response time constant Tf and the vortex normal force time constant Tv are modified.  To 

accomplish this, the exponentials in the deficiency functions using these time constants are raised 

to powers determined by the logic outlined in Section 3.5.2.  Two indices are used as the power 

of the exponentials, σ1 and σ3.  An additional index σ2 was used in early implementations of the L-
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B model so the numbering σ1 and σ3 is still used for consistency with the legacy notation.  

Equation 3.32 from the trailing edge flow separation model is redefined as Equation 3.44 where 

Ef and El
f are defined by Equations 3.45 and 3.46 respectively. 
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To determine vortex lift, Equation 3.39 is similarly redefined by Equations 3.47 to 3.49. 
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3.5.2 Logic for time constant modification 

The logical hierarchy for modifying σ1 and σ3 was summarized by Leishman (2011).  

Modifications to σ1 are based primarily on whether trailing edge flow is separating or reattaching.  

Table 3.1 contains the hierarchy of logic checks for separating flow and Table 3.2 covers the 

logic checks for reattaching flow.  The tables are structured sequentially such that when a logic 

check passes, it overrides the previous value. 
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Table 3.1: Time constant logic for separating trailing edge flow, f”n<f”n-1 

Criteria Modification Physical Justification 

1nn nC C   
1 1   The default value for separating flow. 

1nn nC C   
1 1.75   

Leading edge flow separation has begun resulting in 

accelerated trailing edge separation point movement. 

1 0.7nf 
   1 2   

If the flow separation point is less than the position x/c = 

0.7, further separation occurs very quickly.  

0K   1 2   

When the angle of attack is decreasing yet trailing edge 

flow separation is still occurring, the boundary layer time 

constant is relaxed to allow rapid reorganization of the 

boundary layer. 

 

Table 3.2: Time constant logic for reattaching trailing edge flow, f”n>f”n-1 

Criteria Modification Physical Justification 

1nn nC C   
1 0.5   The default value for reattaching flow. 

0 v vlT   1 0.25   
Restricts trailing edge flow reattachment if the vortex is in 

the process of shedding. 

0K   1 0.75   

When the angle of attack is increasing yet trailing edge 

flow reattachment is still occurring, the boundary layer 

time constant is relaxed to allow rapid reorganization of 

the boundary layer. 

 

To modify the rate of vortex formation and decay, modifications are made to σ3.  Table 

3.3 outlines the hierarchy of logic checks that override previous values. 

Table 3.3: Time constant logic governing vortex formation and decay 

Criteria Modification Physical Justification 

2vl v vlT T   3 3   
After the vortex passes the trailing edge, it decays more 

rapidly. 

1n nf f 
   3 4   If flow is reattaching, vortex decay further increases. 

0 v vlT   3 1   The default value, used during vortex shedding. 

0 v vlT   

0K   
1 2   

If the vortex is shedding but angle of attack is decreasing, 

then vortex decay is increased. 

0K   3 4   
If the previous four conditions do not apply, but angle of 

attack is decreasing, experimental evidence suggests that 

the vortex decays very rapidly. 

1n nf f 
   

0K   
3 1   

The default value, used when flow is reattaching and 

angle of attack is decreasing. 
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CHAPTER 4 

DYNAMIC STALL MODEL IMPLEMENTATION AND 2D 

VALIDATION 
 

4.1 Model Development 

A Beddoes-Leishman dynamic stall model was developed in Matlab using the theory 

outlined in Chapter 3.  The model was written to replace the use of 2D look-up tables during time 

marching simulations in WInDS, using wind speed and angle of attack at a given blade node and 

outputting Cl and Cd.  An initialization step at the beginning of simulations calculates relevant 

model coefficients from the 2D steady airfoil data and uses the same Matlab variables and data 

structures as WInDS.  While the model was written specifically for coupling with WInDS for 3D 

simulations, it can also be used as a standalone 2D model using a driver script to provide the 

inputs for time marching simulations.   

Table 4.1 gives the default indicial coefficients and time constants that were used for all 

subsequent sections.  The indicial coefficients, A1, A2, b1, and b2, were defined by Leishman and 

Beddoes (1986) and the time constants Tp, Tf, Tv, and Tvl, were defined by Gupta and Leishman 

(2006).  While the user has the option to change these constants, they should not be considered 

tunable parameters.  When available, airfoil specific time constants should be used, derived using 

system identification techniques for periodically unsteady experimental data. 

 

Table 4.1: Empirical coefficients inherent to the model  

Tp Tf Tv Tvl A1 A2 b1 b2 

1.7 3.0 6.0 11.0 0.3 0.7 0.14 0.53 

 

The user has the option to select the TE separation point model, either Equation 3.26 or 

3.27, and to display the fits to the 2D steady data.  Using the three function fit from Equation 3.27 

tends to provide better results for the thick airfoils typically used for wind turbine applications, 
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however Equation 3.26 may occasionally work better for thin airfoils outboard on the blade.  It is 

essential that the user verifies the fitness of the steady TE separation point model in order to 

achieve accurate results. 

4.2 Experimental Data Set 

Two-dimensional, oscillating experimental data are available through NREL from wind 

tunnel tests conducted at The Ohio State University (OSU) Aeronautical and Astronautical 

Research Laboratory.  One of the specific goals of the experiments was to examine the dynamic 

stall behavior of thick airfoils representative of those used on wind turbine blades.  For a given 

test, an airfoil was oscillated at a constant frequency and the aerodynamic forces were recorded.  

This was repeated over a range of reduced frequencies, mean values for angle of attack, 

amplitudes of angle of attack, and Reynolds numbers for several airfoils.  The details for the 

experimental setup can be found in Ramsay et al. (1995), and the relevant modelling parameters 

are summarized in Table 4.2. 

Table 4.2: Summary of OSU modelling parameters 
Chord, c (m) 0.457 
Reynolds number, Re (x106) 0.75, 1.0, 1.25, 1.4 
Angle of attack pitch amplitude, αamp (°) 5.5, 10 
Mean angle of attack, αmean (°) 8, 14, 20 
Pitch reduced frequency, k 0.026, 0.053, 0.78 

 

OSU experimental conditions were replicated to validate the functionality of the dynamic 

stall model.  Steady airfoil data from the OSU wind tunnel were also used for consistency.   

Representative sample results for the S809 airfoil are presented in this section.  The S809 was 

selected since it is also used in the experimental data set presented in Section 5.2.  Results for 

additional test cases can be found in Appendix A.  Table 4.3 shows the coefficients calculated 

during model initialization for the steady airfoil data at different Reynolds numbers.  Figure 3.2 

shows fits to the steady airfoil data using the coefficients in Table 4.3 for Re = 1.0 x 106.  Again, 
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it is important to note that accuracy model predictions are highly dependent on the accuracy of 

Kirchhoff/Helmholtz trailing edge flow separation fits at low angles of attack. 

Table 4.3: Model coefficients calculated from steady data 

Re  7.5 x 105 1.0 x 106 1.25 x 106 

nC


[rad-1] 7.150 6.684 6.864 

1nC  0.9702 1.0093 1.1376 

2nC  2.1840 2.1815 2.2754 

0dC  0.0017 0.0017 0.0010 

0  [°] 0.905 0.908 0.927 

1  [°] 8.07 8.57 7.98 

2  [°] 17.1 18.1 18.2 

1c  1.0 1.0 1.0 

2c  0.0268 -0.0999 -0.0937 

3c  0.0178 0.0304 0.0225 

1a  -0.107 -2.51 x 10-4 -0.0022 

2a  3.824 2.680 2.387 

3a  2.409 x 107 1.875 x 1011 1.659 x 1011 

1S  4.519 47.723 35.022 

2S  -12.367 -8.193 -8.006 

3S  -65.562 -91.746 -91.279 

 

4.3 Selection of the Critical Normal Force Coefficient 

When comparing model performance to the experimental data, chord force is not 

accurately predicted using Equation 3.35.  The transition to the post stall expression is highly 

sensitive to the value selected for the critical normal force.  Furthermore, Cn1 is a variable in the 

post stall expression so a poorly selected value causes erroneous results.  Using the maximum 

steady normal force for Cn1 yields accurate results for unsteady normal force, but causes 

preemptive transition to the post stall expression for chord force.  Sensitivity analysis shows that 

higher values for Cn1 give better results for chord force but overpredict normal force due to 
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unrealistically delaying separation of the leading edge vortex.  It is clear that an alternate criteria 

is needed for chord force. 

Under steady conditions, the maximum normal force occurs soon after the first break 

point α1.  Figure 3.2 however, shows that the expression for chord force using the Kirchhoff/ 

Helmholtz theory holds for high angles of attack until the second break point α2 is reached.  

Rather than using the onset of leading edge flow separation as the criteria, a second critical 

normal force Cn2 corresponding to α2 is used.  Since the ersatz normal force, C’n, is the pressure 

lagged potential normal force under thin airfoil theory, Cn2 is calculated using thin airfoil theory 

where α = α2, shown in Equation 4.1.  Equation 3.35 is then modified to give Equation 4.2.   
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    [4.2]  

Figure 4.1 shows an example of chord force using Cn1 and Cn2 as the criteria compared to 

OSU experimental data.  This test case uses the S809 airfoil where Re = 1.0×106, k = 0.078, 

αamplitude = 10°, and αmean = 14°.  The critical normal forces are Cn1 = 1.0093 and Cn2 = 2.1815.  

Both methods initially predict the same chord force using the pre-stall Kirchhoff/ Helmholtz 

expression.  However, using Cn1 results in an early transition to the post-stall expression and 

delayed transition back as angle of attack decreases.  This causes significant under prediction of 

chord force and over prediction of drag compared to the experimental data.  Using Cn2 provides 

an excellent fit, although negative chord forces shown in the experimental data are over predicted 

because Equations 3.35 and 4.2 yield positive result for 0° ≤ α ≤ 180°. 
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Figure 4.1: Sample results for chord force and drag using Eq. 3.35 and 4.2 

4.4 Model Validation against 2D Data 

S809 airfoil test cases are modeled in which Re = 1.0×106, k = [0.026, 0.04, 0.078], 

αamplitude = 10°, and αmean = [8, 14, 20]°.  Three to four pitching cycles are available for each OSU 

test case.  A sine wave is fit to OSU angle attack data and used as the input for the model, since 

the OSU experiments were designed to only excite a single frequency at a time.  Figure 4.2 shows 

minor deviations from a pure sine wave, which could account for some of differences between the 

model performance and the OSU data near peak angle of attack.  The OSU data also shows some 

cycle-to-cycle variability for the aerodynamic loads, largely attributed to turbulence under 

detached flow.  Figures 4.3 to 4.8 compare model results against the experimental data, showing 

the coefficients lift and drag plotted against angle of attack.   

 
Figure 4.2: Example sine wave fit to OSU angle of attack data 
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In Figure 4.3, 4.4, and 4.5, both the model and experimental results show typical dynamic 

stall lift hysteresis. Stall is delayed while the angle of attack is increasing, resulting in greater lift 

compared to the steady data.  Reattachment is also delayed when the angle of attack is decreasing, 

resulting in less lift than predicted by the steady data.  The hysteresis is more pronounced for 

higher reduced frequencies and approaches the steady case for lower reduced frequencies.  The 

most consistent deviation from the experimental data is the overprediction of lift when angle of 

attack is decreasing and flow has not yet reattached, exhibited across all cases.  Additionally, for 

αmean = 8° and 14°, lift is overpredicted for high angles of attack while angle of attack is 

increasing.  

The unsteady drag response to periodic pitching is much closer to the steady case than the 

lift model.  Drag follows the steady data almost exactly until flow separates, highlighting the 

importance of predicting the point of transition to the post stall formulation of chord force.  The 

model fits the drag data well, although peak drag is under predicted when αmean = 8° and transient 

spikes are not predicted for deep stall when αmean = 14°. 

Overall, the model results agree with the experimental data well and are comparable to 

results obtained by Gupta and Leishman (2006).  When comparing the model results to the 

experimental data, it should be kept in mind that the LB method is a parsimonious approach.  

Rather than model the full pressure and velocity response of the flow field, simplified physics and 

sensitive experimental coefficients are used model the overall progression of the flow.  This 

provides reasonable approximations to the unsteady behavior that are significantly better than 

using steady table look-ups.  Due to inherent simplifications and assumptions in this technique, 

the full dynamic response of the system cannot be captured such as transient peaks in response to 

turbulence.   
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Figure 4.3: CL and CD for the S809 Airfoil with time varying α, k = 0.026, Re = 1.0×106 
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Figure 4.4: CL and CD for the S809 Airfoil with time varying α, k = 0.053, Re = 1.0×106 
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Figure 4.5: CL and CD for the S809 Airfoil with time varying α, k = 0.078, Re = 1.0×106  
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CHAPTER 5 

DYNAMIC STALL COUPLED WITH WInDS 
 

5.1 Model Integration 

Accurate prediction of lift along the blade span is essential to the utility of WInDS.  

Bound circulation strength, Γ, is calculated using the instantaneous lift according to the Kutta-

Joukowski theorem, Equation 2.9, at nodes along the blade for every time step.  According to 

Kelvin’s circulation theorem, circulation in the domain cannot change with time.  Therefore 

changes in the instantaneous bound circulation strength cause equal and opposite vorticity to be 

shed into the wake and convected downstream.  Using the Biot-Savart law, the wake induction 

changes the velocity field at the blade, affecting the instantaneous angle of attack and thus lift and 

bound vorticity. 

WInDS uses fixed point iteration for root finding to solve the coupling between bound 

vortex filament circulation strength and wake induction.  Algorithm 2 developed by Sebastian 

(2012) summarizes the fixed point iteration scheme used by WInDS. 

Algorithm 2: Fixed-Point Iteration in WInDS 

Data: Turbine geometry and wake properties 

Results: Updated bound circulation strength 

1 while ΔΓbound ≥ tolerance 

2  Use Biot-Savart law to compute induced velocities on the lifting-ling due to 

influence of bound and wake filaments 

3  Compute span-wise angles of attack from induced velocities 

4  Compute/table look-up Cl and Cd 

5  Compute new bound circulation strength via Kutta-Joukowski theorem 

6  Multiply difference between old and new bound circulation strengths by a 

relaxation factor. “Relaxed” update is applied to bound circulation strength 

7  Update shed and trailed filaments to satisfy Kelvin’s theorem 

 

The WInDS source code was modified to include the dynamic stall model, which the user 

has the option of turning on or off.  When in use, the L-B model replaces 2D aerodynamic table 

look-ups at Step 4 during fixed point iteration.  The outputted coefficient of lift from the L-B 
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model is used directly by WInDS to calculate bound circulation strength using the Kutta-

Joukowski theorem, and distributed lift and drag are used to calculate global model performance 

metrics such as total rotor thrust, torque, and power.  Several modifications were required to 

prevent stability and accuracy problems once the L-B model was integrated into WInDS. 

By combining the L-B dynamic stall model with a free vortex wake model, induced 

forces from shed vortices are effectively double counted as discussed by Coton et al. (2002).  The 

L-B method includes induced forces on the airfoil by the LE vortex as it forms and then separates 

and convects downstream.  Similarly, WInDS uses the Biot-Savart law to induce a velocity field 

on the blade from shed vortex filaments in the wake.  Since the L-B model includes blade scale 

unsteady viscous effects that WInDS cannot model, it is the more useful approach.  The problem 

is resolved by not including the shed vortices from a given node when applying the Biot-Savart 

law to calculate the induced velocity on that bound node.  All trailing vortices and the shed 

vortices from all other nodes still induce forces on the given node. 

Use of the dynamic stall model could also cause stability problems during fixed-point 

iteration due to the piece-wise axial force model, Equation 4.2.  On very rare occasions, the 

solution for C’n is very close to Cn2 for a given blade node and time step.  As fixed point iteration 

gradually approaches this value, it can trigger a change in the axial force expression being used, 

for example C’n was less than Cn2 but is now greater.  Changing expressions for axial force 

caused a cascade of non-linear changes to propagate in the next iteration.  The subsequent angle 

of attack change can cause C’n to again become less than Cn2, resulting in a loop where the 

convergence criteria is never met.  The dynamic stall model was modified to detect this behavior 

and force the model to use the pre-stall expression for axial force when it arises, as it is the more 

stable of the two expressions.  This is a very rare occurrence so there is a negligible effect on the 

overall model performance.   
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In general, coupling two dynamic models causes convergence of the fixed point iteration 

to be more sensitive.  For test cases that are highly unsteady, such as those with rotor yaw or 

platform motion, smaller relaxation factors must be used for stability, approximately 0.05 to 0.20.  

An optional feature was added to WInDS that tunes the relaxation factor at the beginning of a 

simulation to find a stable operating point.  This feature should be used with care, however, as in 

some cases it chooses unnecessarily small relaxation factors, resulting in significantly longer 

simulation run times and potentially prevents true convergence before the maximum number of 

iteration is reached.  Tuning occurs at the first time step, but future work could allow for dynamic 

relaxation factor tuning throughout the simulation to increase stability and reduce simulation run 

time or employ more robust root finding techniques. 

5.2 Model Validation against 3D Experimental Data 

5.2.1 Experimental data set 

Experimental data from Phase VI of the NREL Unsteady Aerodynamic Experiment 

(UAE) was used to validate WInDS.  The testing campaign used a fully instrument wind turbine 

in controlled conditions in the 24.4 m x 36.6 m wind tunnel at the NASA Ames Research Center.  

Full details about the experimental setup and available data can be found in Hand, et al. (2001).   

Sequence S data was used for validation.  These used steady wind speeds between 5 m/s 

and 25 m/s with 0° to 180° yaw error.  The turbine has a 10 m rotor, upwind with two blades, at a 

constant pitch of 3° and 0° pre-coning.  Booms extending off the blades to measure incident flow 

angles were removed for this test sequence so the flow was minimally disturbed by 

instrumentation.  Aerodynamic forces were determined by integrating measurements at chord-

wise distributed pressure taps at blade span (r/R) locations 0.3, 0.466, 0.633, 0.80, and 0.95.  

Appendix B contains diagrams of the UAE test rotor blades and distributed blade 

properties in Table B.1. The blades use the S809 airfoil from span locations 0.267 to 1.  OSU 
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steady airfoil data at Re = 0.75x106 was used for the S809, shown in Table B.2 in Appendix B 

from Hand, et al. (2001).  The blades transition from a cylinder to the S809 from 0 to 0.267 span.  

This part of the blade cannot be modelled because there are no available airfoil data for the 

transitional sections.   

5.2.2 Results: Steady wind 

Data is available for the UAE rotor for steady wind speeds of 7, 10, 13, 15, 20, and 25 

m/s and 0° yaw angle.  Modelling was performed using WInDS with and without the dynamic 

stall model and with FAST.  FAST is a widely used and accepted aero-elastic design code in 

industry, used for IEC certification testing, so it is included to depict typical disparities between 

model predictions and experimental data.  Further examples of model performance against this 

data set are provided in Simms, et al. (2001), which was a blind model comparison against UAE 

Sequence S data.  The FAST model for the UAE rotor is distributed with FAST as Certification 

Test 10.  Model results for span distributed coefficients of normal and axial force, thrust and 

torque on a single blade, and the total aerodynamic rotor power were compared to the UAE data.   

Figure 5.1 compares the span-wise distributed average coefficients of normal and axial 

force for several wind speeds.  WInDS tends to underpredict the coefficient of normal force near 

the blade root and overpredict near the tip.  The predictions at the 0.3 span location are 

particularly poor.  This is likely caused by not modelling the transitional airfoils below 0.267, 

causing unrealistic behavior near the root.  The coefficients of normal force with and without 

dynamic stall are approximately equal up to 15 m/s.  For 20 m/s and 25 m/s, using dynamic stall 

significantly improves predictions at most blade locations.  This can be attributed to the average 

angle of attack, shown in Figure 5.2, where solid and dashed lines represent WInDS with and 

without dynamic stall respectively.   Since the blades are at fixed pitch angles, the turbine 

operates at high angles of attack at high wind speeds, especially near the blade root.  The dynamic 

stall model is better able to predict the normal force post stall than when using steady data.   
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Figure 5.1: Average blade span distribute CN and CA for steady wind 
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Figure 5.2: Average blade span distributed angle of attack predicted by WInDS for steady wind; 

Solid lines for WInDS with D.S., Dashed lines for WInDS without D.S. 

 

Predictions by WInDS for the coefficient of axial force match the experimental data quite 

well.  Similar to normal force, there are insignificant differences between WInDS with and 

without the dynamic stall model for attached flow conditions.  Post-stall however, using dynamic 

stall tends to overpredict axial force, while the base version of WInDS underpredicted.  This can 

be attributed to the inability of the dynamic stall axial force model to predict forces less than zero.   

Figure 5.3 shows the average torque and thrust per blade as well as the average rotor 

power.  Table 5.1 summarizes the percent error between model predictions and the experimental 

data.  Thrust is calculated quite well despite difficulties predicting the span wise coefficients of 

normal force, over and under predictions average out to approximately the correct solution.  

Improvements in predicting the coefficient of normal force using the dynamic stall model in post 

stall conditions are reflected in the thrust data where prediction error decreases by 8.9% and 

13.1% for 20 m/s and 25 m/s respectively.  The torque per blade and rotor power are significantly 

underestimated by WInDS without the dynamic stall model as a result of consistently under 
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predicting the coefficient of axial force.  Using the dynamic stall model reduces prediction error 

of torque per blade by 18-40% and rotor power by 19-64% for wind speeds greater than 10 m/s. 

 

            
Figure 5.3: Average thrust and torque per blade and total aerodynamic rotor power for steady wind 

 

Table 5.1: Average percent error between model predictions and UAE data for steady 

cases 

 
 

Wind Speed [m/s] 

7 10 13 15 20 25 

Blade 1 

Thrust 

WInDS (%) 1.37 -10.70 -19.00 -18.02 -17.63 -15.87 

WInDS, D.S. (%) 4.04 -8.07 -16.96 -18.21 -8.77 3.56 

Improvement with D.S. (%) -2.67 2.63 2.04 -0.20 8.86 12.31 

Blade 1 

Torque 

WInDS (%) 1.90 -2.60 -33.44 -32.45 -68.28 -54.46 

WInDS, D.S. (%) 2.08 2.16 -14.81 -10.52 27.38 35.33 

Improvement with D.S. (%) -0.18 0.43 18.63 21.92 40.89 19.14 

Rotor 

Power 

WInDS (%) 1.65 -5.68 -32.69 -37.28 -74.56 -67.76 

WInDS, D.S. (%) 0.10 -1.17 -13.64 -16.62 -10.66 -3.79 

Improvement with D.S. (%) 1.54 4.51 19.05 20.66 63.89 63.96 



www.manaraa.com

52 

 

 

There is a discrepancy in the torque and power trends for the UAE data in Figure 5.3.  

This is a result of different measuring techniques being employed, both with inherent weaknesses.  

The torque data is the estimated aerodynamic torque for the instrumented blade, determined by 

integrating the pressure at taps distribute along the blade.  The rotor power was determined by 

measuring the torque on the low speed shaft using a strain gauge.  While both turbine blades had 

the same shape and airfoil distribution, the blades had different weights as a result of one being 

heavily instrumented, causing the rotor to be unbalanced.  Furthermore, the instrumented blade 

had additional roughness due to the pressure taps, potentially changing its stall behavior and 

causing the two blades to have different loading profiles.  This caused significant cyclical loading 

on the low speed shaft, combined with cyclical gravity loads, which are reflected in the strain 

gauge measurements.  The estimated blade torque from the pressure data was used for 

comparisons with model predictions because these cyclical loads are not present.  Rotor power 

measured by the low speed shaft strain gauge was used because loading on the non-instrumented 

blade is unknown and it is not safe to assume it was the same as the instrumented blade. 

5.2.3 Results: Unsteady aerodynamics from rotor yaw 

Unsteady aerodynamic loading is modelled for UAE Sequence S test cases with steady 

wind and non-zero rotor yaw.  Rotor misalignment with the wind causes sinusoidal variations in 

the angle of attack as the blades move towards and away from the wind, which can produce 

dynamic stall.  Table 5.2 summarizes the unsteady angle of attack variations for various yaw test 

cases as calculated by WInDS with the dynamic stall model.  Due to the velocity profile and 

chord distribution along the blade, the reduced frequency increases near the blade root and 

slightly with increased yaw angles.  Higher wind speeds reduce the unsteadiness as a result of a 

larger proportion of the velocity from the free stream wind rather than the rotor rotation.  Most 
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importantly, higher yaw angles cause larger amplitude angle of attack oscillations resulting in a 

more dramatic dynamic stall response.   

 

Table 5.2: Unsteady variations in angle of attack for UAE Sequence S yawed cases calculated 

by WInDS with dynamic stall 

r/R 
Wind Speed [m/s] 10 13 15 

Yaw Angle [°] 10 30 60 10 30 10 30 60 

0.30 

Reduced frequency, k 0.183 0.184 0.192 0.159 0.164 0.148 0.154 0.157 

Mean angle of attack, αmean [°] 13.1 13.4 6.9 24.3 20.6 27.2 24.0 21.6 

Angle of attack amp., αamp [°] 3.5 11.0 14.9 5.0 16.5 5.5 17.3 40.4 

0.47 

Reduced frequency, k 0.118 0.118 0.121 0.108 0.110 0.102 0.104 0.109 

Mean angle of attack, αmean [°] 14.0 14.7 6.2 24.3 21.4 28.0 25.9 17.4 

Angle of attack amp., αamp [°] 2.2 7.9 8.4 3.3 10.3 4.0 12.6 22.4 

0.63 

Reduced frequency, k 0.080 0.080 0.082 0.076 0.077 0.073 0.074 0.077 

Mean angle of attack, αmean [°] 13.8 11.7 5.1 21.1 18.0 24.4 21.9 12.8 

Angle of attack amp., αamp [°] 1.5 4.1 4.6 2.4 6.8 2.6 8.2 12.6 

0.80 

Reduced frequency, k 0.054 0.055 0.055 0.053 0.053 0.052 0.052 0.053 

Mean angle of attack, αmean [°] 11.3 9.6 4.1 15.4 14.2 18.8 17.7 9.0 

Angle of attack amp., αamp [°] 1.0 2.6 2.6 1.1 4.7 4.0 5.7 6.3 

0.95 

Reduced frequency, k 0.039 0.039 0.039 0.038 0.038 0.038 0.038 0.038 

Mean angle of attack, αmean [°] 8.3 7.0 3.1 12.4 10.4 14.4 12.7 6.4 

Angle of attack amp., αamp [°] 0.6 1.4 1.5 1.1 2.7 1.3 3.0 3.7 

 

 

 

Figure 5.4 shows an example of dynamic stall occurring over a single rotor cycle during 

the WInDS simulation of the 10 m/s, 30° yaw test case at r/R = 0.3.  The angle of attack profile is 

similar to Figure 4.6b, showing comparable response in full 3D testing as in 2D, with significant 

deviations from the steady airfoil data.  Without the dynamic stall model active, the coefficient of 

normal force follows the steady airfoil data exactly. 
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Figure 5.4: Example of dynamic stall occurring during a WInDS simulation 

UAE Sequence S, U = 10 m/s, Yaw = 30°, r/R = 0.3 

 

 Once initial transients settle, WInDS simulations show cycle to cycle repeatability as the 

unsteady forcing conditions remain constant.  The UAE data follow cycle to cycle trends, but 

with significant variability due to turbulent fluctuation, especially for unattached flow.  To 

account for this, the UAE data is averaged in 1° azimuth angle bins for at least thirty cycles.  

Figure 5.5 shows WInDS and FAST coefficient of normal and axial force results for a single rotor 

cycle compared to the averaged UAE data for the 10 m/s, 30° yaw test case. 
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Figure 5.5: Span distributed CN and CA for UAE Seq. S, 10 m/s, 30° yaw 
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A similar trend can be seen as with the steady cases, in which coefficient of normal force 

is underpredicted near the blade root and overpredicted near the blade tip.  Near the blade root 

where conditions are highly unsteady, WInDS with dynamic stall significantly improves the 

coefficient of normal force predictions.  Minor qualitative improvements to the axial force 

predictions are also achieved, especially predicting the onset of flow separation near the root and 

with less over prediction near the blade tip.   

The most concerning discrepancy between WInDS and the experimental data is the 

underprediction of peak normal forces due to preemptively shedding the leading edge vortex.  

The instrumented blade had additional roughness from the pressure taps that could have increased 

the severity of dynamic stall.  It is likely to also be partially a result of three-dimensional stall 

delay, a widely acknowledged yet poorly understood phenomenon.  As wind turbine or helicopter 

rotors rotate, flow separation tends to be delayed further than what is measured by two 

dimensional pitch oscillation experiments.  Several empirical correction models have been 

proposed, summarized by Breton (2008), which typically modify the steady two-dimensional 

airfoil tables along the blade span.  The L-B dynamic stall model is inherently a 2D model so stall 

delay effects are currently unaccounted for in WInDS.  Stall delay is beyond the scope of this 

work, but is an import consideration for future development of WInDS.  The work of Wang, et al 

(2013) looks particularly promising to this end; 3D modifications to the Kirchhoff-Helmholtz 

model were presented which could improve the accuracy of the L-B model. 

When the yaw angle is further increased to 60°, the angle of attack changes so rapidly 

that rotor/wake interaction effects dominate the unsteady blade element viscous effects.  As a 

result, the solution with and without dynamic stall converge and match the experimental data 

quite well as shown in Figure 5.6 for the 10 m/s, 60° yaw case.  The solutions are almost identical 

except for improved prediction of peak forces near the root using the dynamic stall model.  
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Figure 5.6: Span distributed CN and CA for UAE Seq. S, 10 m/s, 60° yaw 
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Similar to the steady data, integrating the distributed forces along the blade to determine 

the thrust, torque, and power tends to average out predictions errors.  The thrust and torque per 

blade are well predicted by WInDS using the dynamic stall model in Figure 5.7 for the 10 m/s, 

30° yaw case.  WInDS and FAST predictions for power poorly fit the trend in the experimental 

data, but the average values are still quite close.  This discrepancy is caused by the strain gauge 

on the low speed shaft that was used to collect power data.  Cyclical loading from the unbalanced 

rotor and gravity cause shaft bending, resulting in cyclical measurement error that does not reflect 

the aerodynamic torque.  Table 5.3 summarizes the thrust, torque, and power results for all yawed 

test cases.  The root mean square (RMS) error is used to quantify the model fitness to the 

experimental data.  Using the dynamic stall model improves the accuracy of WInDS in all cases.  

Mean values in Table 5.4 are also significantly improved.  Appendix C provides additional 

supplemental figures for yawed test cases. 

 

 

Figure 5.7: Thrust and torque per blade and total aerodynamic rotor power for UAE Sequence S, 10 m/s, 

60° yaw 
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Table 5.3: RMS error between model predictions and UAE data for unsteady cases 

 
Wind Speed [m/s] 10 13 15 

Yaw Angle [°] 10 30 60 10 30 10 30 60 

Blade 

1 

Thrust 

WInDS (N) 81.1 75.4 40.4 180.9 150.8 229.7 211.7 97.6 

WInDS, D.S. (N) 56.2 54.5 38.5 152.9 110.3 201.5 152.6 74.4 

Improvement w. D.S. (%) 30.7 27.8 4.7 15.5 26.9 12.3 27.9 23.8 

Blade 

1 

Torque 

WInDS (N·m) 67.6 84.9 26.8 194.4 169.7 283.4 246.3 119.0 

WInDS, D.S. (N·m) 41.0 49.8 17.9 56.5 94.7 91.2 117.8 84.5 

Improvement w. D.S. (%) 39.3 41.3 33.2 70.9 44.2 67.8 52.2 29.0 

Rotor 

Power 

WInDS (kW) 1.6 1.7 0.8 2.8 2.8 5.2 4.9 2.9 

WInDS, D.S. (kW) 1.3 1.6 0.7 0.9 2.1 2.1 3.4 2.6 

Improvement w. D.S. (%) 15.9 9.6 6.7 69.6 24.4 59.3 30.4 9.2 

 

Table 5.4: Average percent error between model predictions and UAE data for unsteady cases 

 
Wind Speed [m/s] 10 13 15 

Yaw Angle [°] 10 30 60 10 30 10 30 60 

Blade 

1 

Thrust 

WInDS (N) -9.3 -3.6 -8.3 -17.5 -12.8 -20.5 -16.6 0.7 

WInDS, D.S. (N) -6.5 -0.6 -6.7 -14.7 -8.4 -17.8 -10.8 5.4 

Improvement w. D.S. (%) 2.9 3.0 1.6 2.8 4.4 2.8 5.8 -4.6 

Blade 

1 

Torque 

WInDS (N·m) -8.0 -1.9 -9.3 -26.7 -13.5 -47.7 -24.0 -3.7 

WInDS, D.S. (N·m) -4.4 0.0 -6.9 -6.4 -4.0 -10.4 -3.3 0.3 

Improvement w. D.S. (%) 3.6 1.9 2.5 20.3 9.4 37.2 20.7 3.3 

Rotor 

Power 

WInDS (kW) -11.7 -7.7 -5.5 -27.1 -18.7 -52.7 -32.9 -6.2 

WInDS, D.S. (kW) -8.8 -5.9 -2.9 -6.8 -10.0 -19.4 -15.0 -2.3 

Improvement w. D.S. (%) 3.0 1.8 2.6 20.3 8.7 33.3 17.9 4.0 

 

 

5.3 Occurrence of Dynamic Stall in FOWTs 

To model FOWTs aerodynamics in WInDS, the results from FAST simulations are used 

to predefine structural motions.  This decouples the structural kinematic and aerodynamic 

response in WInDS, but still gives a very reasonable approximation of the structural motions and 

controller response for a given set of conditions.  The NREL 5MW Offshore Reference Turbine 

(Jonkman, et. al, 2009) is modelled on the OC3/Hywind spar-buoy (Jonkman, 2010) and the 

MIT/NREL TLP (Matha, 2009) floating platforms, as well as onshore as a baseline.  For 

consistency, a similar test matrix is used as Sebastian (2012), which examined three wave and 

wind conditions for below rated, rated, and above rated operation, outlined in Table 5.5. 
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Table 5.5: Test matrix for FAST and WInDS simulations of FOWTs 
 Wind  

Speed, 

U∞ 

[m/s] 

Rotor  

Speed, 

Ω 

[rpm] 

Tip Speed 

Ratio, 

λ 

[-] 

Significant 

Wave Height, 

Hs 

[m] 

Peak Spectral 

Period, 

Tp 

[s] 

Below-rated 6.00 8.76 9.63 1.83 12.72 

Rated 11.40 12.10 7.00 2.54 13.35 

Above-rated 18.00 12.10 4.43 4.09 15.33 

 

Aerodynamic modeling in FAST is conducted with the dynamic inflow, wake induction-

factor, dynamic stall and hub and tip loss models active in order to match realistic conditions as 

closely as possible.  The free-stream wind velocity is defined as steady and uniform with no yaw 

or shear.  Wave time series are calculated with the JONSWAP spectrum using the sea state 

conditions in Table 5.5.  All structural and platform degrees of freedom are used to simulate 

typical operating conditions with the torque and pitch controllers on.   

The steady state properties for the NREL 5 MW were determined by Jonkman et. al 

(2009) using FAST.  Therefore the FAST results for onshore test cases are assumed to be the 

correct physical solution and used as the baseline.   The NREL 5MW uses the DU series of 

airfoils developed at the Delft University of Technology as well as the NACA64-618 near the 

blade tip.  The steady 2D airfoil data used by the FAST model is corrected for 3D stall effects 

using methods described by Du & Selig (1998) and Eggers (2003).   

This empirical correction used in FAST presents modeling challenges when using 

WInDS with the dynamic stall model, because the Kirchhoff/Helmholtz trailing edge separation 

point fits do not account for stall delay modifications to the 2D steady airfoil data.  Since the 

separation point is calculated using the data for coefficient of normal force, the normal force fits 

are still quite good as shown in Figure 5.8.  However, the fits to the coefficient of axial force are 

poor at low angles of attack, where the turbine operates for the majority of the simulations.  Using 

non-stall delayed data improves the fit considerably, although the DU series of airfoils is still not 

well characterized by the Kirchhoff/Helmholtz Theory. 
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           Figure 5.8: Kirchhoff/Helmholtz trailing edge fits for the NREL 5MW airfoils 
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Table 5.6 summarizes rotor thrust and torque for the NREL 5MW using WInDS with and 

without stall delayed steady airfoil data.  Using the non-stall delayed data improves the torque 

predictions for the dynamic stall model considerably in below rated and rated conditions.  

However, due to poor the Kirchhoff/Helmholtz trailing edge fits for Ca, WInDS without the 

dynamic stall model provides better predictions for torque over the range of wind speeds.  This is 

contrary to the results for the UAE experimental data presented in the previous section, which has 

superior model performance using the dynamic stall model.  Kirchhoff/Helmholtz fits for the 

S809 airfoil data are more accurate at low angles of attack.  Additionally the S809 is a very 

gradually stalling airfoil, causing the separation point fits to be accurate up to 18° whereas the 

DU series is only accurate up to about 10° for Cn and 5° for Ca. 

Table 5.6: Model predictions for the NREL 5MW onshore 

 
Below Rated Rated Above Rated 

T 
(N) 

Q 
(N·m) 

T 
(N) 

Q 
(N·m) 

T 
(N) 

Q 
(N·m) 

Baseline FAST Mean (×106
) 0.241 1.013 0.642 4.180 0.352 4.180 

Stall 

Delay 

WInDS 
Mean (×106

) 0.250 1.083 0.654 4.257 0.333 4.092 

% Error 3.64 6.90 1.90 1.85 -5.59 -2.10 

WInDS, 

D.S. 

Mean (×106
) 0.245 0.701 0.639 3.134 0.336 4.303 

% Error 1.65 -30.78 -0.41 -25.03 -4.69 2.94 

No Stall 

Delay 

WInDS 
Mean (×106

) 0.250 1.085 0.649 4.227 0.324 4.002 

% Error 3.68 7.09 1.10 1.12 -8.01 -4.27 

WInDS, 

D.S. 

Mean (×106
) 0.245 0.883 0.632 3.714 0.326 4.396 

% Error 1.32 -12.85 -1.48 -11.15 -7.50 5.16 

 

Thrust predictions in Table 5.6 are improved by the inclusion the dynamic stall model by 

about 2%.  Normal force increases where dynamic stall occurs near the blade root, but also 

decreases outboard due to the trailing edge flow separation model resulting in a lower net thrust.  

While WInDS underpredicts Ca with the dynamic stall model on, it has a minor effect on the CL 

predictions due to high tip speed ratios and low angles of attack.  Figure 5.9 shows the percent 

contribution to CL from Ca for WInDS.  Changes in the percent contribution to CL when using the 
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dynamic stall model are very small along the blade span.  The exception is the blade node closest 

to the root where dynamic stall increases the average normal force and thus decrease the ratio 

more dramatically.   Given that the Kutta-Joukowski theorem uses the coefficient of lift to 

calculate vortex filament circulation strengths, the wake evolution is not adversely affected by 

poor axial force predictions using the dynamic stall model.   

 
Figure 5.9: Average percent contribution to lift from axial force for WInDS 

An example of the wake structure generated by WInDS is shown in Figure 5.10. The 

OC3/ Hywind spar buoy is simulated in above rated conditions for 120 seconds using the stall 

delayed airfoil data.  Only the wake generated by one of the three blades is shown for clarity.  

Instances of dynamic stall leading edge vortex separation are observable near the blade root, 

highlighted and tracked in the wake in blue.  Differences in the wake evolution are subtle because 

only the nodes closest to the blade root are significantly changed due to leading edge flow 

separation.  As the wake propagates however, the effect becomes more apparent.  Both cases 

become unstable but the case with the dynamic stall remains more organized, most clearly seen 

between 13D and 15D in Figure 5.10.  This can likely be attributed to smoother variations in the 

coefficient of lift with the dynamic stall model on. 
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(a) 

 
(b) 

 

Figure 5.10: WInDS simulation wake structure after 120 seconds with the dynamic stall model (a) and 

without (b) 

 

Table 5.7 summarizes the percentage of time the flow is separated at different blade 

nodes.  There are no instances of leading edge flow separation for blade nodes beyond r/R = 

0.252 so further outboard nodes are combined in the table.  Using the non-stall delayed airfoil 

data, the blade node at r/R = 0.187 experience separated flow for the duration of the simulations 

in rated and above rated conditions, across all three models.  There are isolated instances of 

platform motion decreasing the angle of attack enough to allow brief flow reattachment for the 

OC3/Hywind spar buoy.  

Table 5.7: Percent of time flow is separated predicted by WInDS using dynamic stall 

 r/R 

Onshore OC3/Hywind Spar-buoy MIT/NREL TLP 

Below 

Rated 
Rated 

Above 

Rated 

Below 

Rated 
Rated 

Above 

Rated 

Below 

Rated 
Rated 

Above 

Rated 

Stall 

Delay 

0.187 0.0 59.5 70.5 1.0 53.3 78.9 0.0 68.5 74.0 

0.252 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 

Outboard 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

No 

Stall 

Delay 

0.187 33.3 100.0 100.0 49.7 99.7 97.8 33.3 100.0 100.0 

0.252 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 

Outboard 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Using the stall delayed steady airfoil data, higher steady Cn values result in a higher 

critical normal force criteria, Cn1, allowing the flow to cyclically reattach.  It seems counter 
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intuitive that flow is separated more often for the onshore turbine than the OC3/Hywind spar 

buoy in Table 5.7 at rated conditions.  This can be explained by examining when flows separation 

is occurring for the onshore turbine.  At rated and above rated conditions, dynamic stall and 

reattachment occur with every rotor rotation due to cyclical changes in angle of attack as a result 

of the turbine shaft tilt.  The above rated case is stalled a high proportion of the time due to 

further delay in flow reattachment as a result of higher amplitude angle of attack variations near 

the root.  The floating cases are less periodic than the onshore.  The random waves cause platform 

motion that result in cycle to cycle variability in the angle of attack.  As a result, flow separation 

is avoided for some cycles by platform motion decreasing the angle of attack or rate of change.  

Alternatively, flow reattachment can be prevented for multiple cycles resulting in the higher 

proportions of separated flow. 

Figure 5.11 shows the time series for angle of attack and coefficient of lift for the 

MIT/NREL TLP under rated conditions at the blade node r/R = 0.187.  Flow is separated at this 

blade node for the duration of the simulation.  With the dynamic stall model, the angle of attack 

time series experiences a phase lag compared to the base version of WInDS.  This lag is reflected 

in the coefficient of lift, which also experiences higher peak lift and typical dynamic stall 

hysteresis.  Figure 5.12 shows a further outboard node, r/R = 0.252, where the flow is attached for 

the entire simulation.  Under attached flow, the angle of attack using the dynamic stall model 

slightly leads the base version of WInDS. Qualitatively the Cl predictions of the two models 

follow the same trend, although Cl is consistently slightly lower for attached flow using the 

dynamic stall model.  These differences are due to a combination of lower Cn predictions and the 

propagation of error from under0predicted Ca.  The same trends hold for the OC3/Hywind Spar-

buoy, however due to more significant platform motion, angle of attack changes are less periodic.  

Table 5.8 summarizes the variation in CL across all cases using the non-stall delayed steady airfoil 

data. 
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Figure 5.11: Time series of CL and α for the NREL 5MW on the MIT/NREL TLP in rated conditions  

blade node r/R = 0.187, detached flow 

 

 

 

Figure 5.12: Time series of CL and α for the NREL 5MW on the MIT/NREL TLP in rated conditions, 

 blade node r/R = 0.252, attached flow 
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Table 5.8: Summary of CL at blade node r/R = 0.187 

  

WInDS, no D.S. WInDS, D.S. 

Mean 
St. 

Dev. 
Min Max Mean 

St. 

Dev. 
Min Max 

Monopile 

Below Rated 1.165 0.037 1.102 1.210 1.149 0.046 1.077 1.233 

Rated 1.051 0.038 1.008 1.113 1.094 0.068 0.995 1.190 

Above Rated 1.038 0.046 0.983 1.125 1.086 0.080 0.978 1.211 

NREL/ 

MIT TLP 

Below Rated 1.157 0.046 1.062 1.210 1.149 0.062 1.039 1.264 

Rated 1.060 0.061 0.979 1.210 1.102 0.088 0.968 1.322 

Above Rated 1.041 0.058 0.962 1.202 1.089 0.088 0.973 1.292 

OC3/ 

HyWind 

Spar 

Below Rated 1.152 0.047 1.052 1.210 1.157 0.064 1.040 1.298 

Rated 1.071 0.051 0.963 1.186 1.113 0.069 0.976 1.309 

Above Rated 1.026 0.063 0.917 1.210 1.069 0.082 0.961 1.331 

 

 

Figure 5.13 shows blade node r/R = 0.187 for the TLP at below rated conditions.  There 

are instances of both flow separation and reattachment and the trends from the previous two 

figures hold respectively.  Separated flow is indicated by the plot area highlighted in gray.   

 

 

 

Figure 5.13: Time series of CL and α for the NREL 5MW on the MIT/NREL TLP in below rated conditions 

blade node r/R = 0.187, detached flow highlighted in gray 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 
 

6.1 Concluding Remarks 

Inclusion of a dynamic stall model to account for blade section level unsteadiness enables 

WInDS to predict aerodynamic loads during instances of dynamic stall when static 2D airfoil data 

is not representative of the true physical behavior.  The validation work presented in this thesis 

shows excellent agreement with experimental data, increasing the confidence in the model for 

future research or design work.    

The implemented Leishman-Beddoes dynamic stall model shows excellent agreement 

with two-dimensional unsteady pitch oscillation experimental data presented in Chapter 4 and 

Appendix A.  An alternative criteria is defined for the transition to the stalled chord force model 

rather than the critical normal force criteria.  A second critical normal force criteria is calculated 

as the coefficient of normal force under potential flow corresponding to the chord force break 

point angle of attack under steady conditions.  As a result, lift and drag are accurately predicted 

for a variety of airfoils over a wide range of operating conditions included Reynolds number, 

mean angle of attack, angle of attack amplitude, and reduced frequency.   

The dynamic stall model is integrated into WInDS as an optional alternative to two-

dimensional steady airfoil look-up tables.  This addition allows WInDS to model unsteady 

viscous and pressure effects at the blade level as well as unsteady rotor scale effects brought on 

by the wake.  Comparisons to wind tunnel data for a full scale turbine in Section 5.2 show 

considerable improvement from the baseline WInDS model without dynamic stall.  The 

improvement in aerodynamic rotor power predictions for steady cases range from 1.5% to 64%, 

with the largest improvements at high wind speed.  Yawed cases are similarly improved, with 
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aerodynamic rotor power RMS error reduced by 6.7% to 69.7% and mean percent error reduced 

by 1.3% to 33.3%.  

However, it is important to note that the model is extremely sensitive to the accuracy of 

Kirchhoff/Helmholtz fits to the 2D steady airfoil data.  The curve fitting process is automated, but 

due to the high variability of aerodynamic properties for different airfoils, the routine may not 

always yield acceptable results.  Poor fits to the data cause erroneous results, so caution should be 

used when applying the model to new airfoils.  In these cases, fitting may need to be calculated 

by hand or the curve fitting routines modified for the data, which will require a significant 

amount of expertise on the part of the modeler.  Furthermore, the dynamic stall model does not 

account for stall delay, so airfoil tables modified for stall delay will likely not result in suitable 

fits. 

Sensitivity to 2D steady airfoil curve fitting is reflected in the floating simulations of the 

NREL 5MW.  The DU airfoils used on the NREL 5MW blade are poorly characterized by the 

Kirchhoff/Helmholtz Theory resulting in worse prediction of rotor torque than the base version of 

WInDS. Thrust predictions are still improved for the NREL 5MW using the dynamic stall model 

however, with mean error decreasing by about 2% compared to FAST.  When dynamic stall 

occurs, changes in the angle of attack and lift are significantly lagged compared to using steady 

airfoil data.  Typical dynamic stall hysteresis occurs with increased peak lift. During attached 

flow along the majority of the blade outboard from the root, lift predictions are qualitatively 

similar to the base version of WInDS.  Lift predictions are sufficiently accurate for analysis of 

wake evolution and appear to increase wake stability due to smoother load variations.  Due to 

improved characterization of the normal force profile during the occurrence of dynamic stall, it is 

recommended that the dynamic stall model be used with WInDS for future analysis of FOWT 

wake evolution.   
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6.2 Future Work 

6.2.1 WInDS root finding method 

The combination of two dynamic models extends the fixed point iteration method to its 

limits.  Smaller relaxation factors and higher limits on the maximum number of iterations are 

required, resulting in slower convergence and significantly longer simulations.  This problem is 

exacerbated for highly unsteady cases with large yaw angles or FOWT platform motion.  The use 

of more robust root-finding methods should be explored to avoid this problem.  

6.2.2 Unsteady 3D stall effects 

The Leishman-Beddoes dynamic stall model examines the unsteady response over a two-

dimensional cross-section.  This neglects unsteady three-dimensional effects.  Several models 

have been developed to model stall delay, the delay in leading edge vortex shedding for rotating 

wings.  The addition of a stall delay model will likely be a relatively simple to implement since 

several of the models function through modification of the steady airfoil data along the blade 

span.  This will require reexamination of the Kirchhoff/Helmholtz trailing edge separation fits to 

steady airfoil data.  Another phenomenon worth investigation is the span-wise propagation of 

dynamic stall, a phenomenon that is not well understood and not included in the Leishman-

Beddoes dynamic stall model. 

6.2.3 Airfoil Sensitivity 

It is clear that use of the dynamic stall model in WInDS can significantly increase the 

global accuracy of the model.  However, this is dependent on accurate characterization of the 2D 

steady airfoil data with Kirchhoff/Helmholtz theory curve fitting.  Alternative trailing edge flow 

separation models or modifications to the Kirchhoff/Helmholtz theory should be explored to 

increase model robustness. 
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6.2.4 WInDS/FAST coupling 

When modeling FOWTs with WInDS, platform motions must be prescribed prior to 

time-marching simulations.  This decouples the aerodynamic and structural responses.  Coupling 

WInDS with an existing aero-elastic computer aided engineering tool such as FAST could 

significantly increase the utility of WInDS predictions and give new insights into the dynamics of 

FOWTs.  The recent release of FAST v8 significantly increased the modularity of FAST, 

requiring each sub-module to follow a unified framework.  This should facilitate the coupling 

between WInDS and FAST, replacing the existing blade element momentum based aerodynamic 

model, AeroDyn.   
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APPENDIX A 

SUPPLEMENTAL DYNAMIC STALL MODEL 2D VALIDATION 
 

Section 4.4 shows sample model results for the S809 airfoil, modeled with Re = 1.0×106, 

k = [0.026, 0.04, 0.078], αamplitude = 10°, and αmean = [8, 14, 20]°.  Further test cases using the OSU 

pitch oscillation tests are presented here.  The S809 is thoroughly validated to check the accuracy 

of the model over a wide range of conditions.  Sample results are also included for other airfoils 

to validate that model accuracy is not limited exclusively to the S809. 

 Figures A.1 to A.9 demonstrate model performance over a range of Reynolds numbers.  

An extension of the results from Section 4.4, the S809 is shown at Re = [0.75, 1.25, 

1.4]×106, αamplitude = 10°, and αmean = [8, 14, 20]° at three oscillation frequencies. 

 Figures A.10 to A.12 show model performance for smaller amplitude pitch oscillations.  

The S809 is presented where Re = 1.0×106, k = [0.026, 0.049, 0.077], αamplitude = 5.5°, and 

αmean = [8, 14, 20]°. 

 Figures A.13 to A.20 provide a sample case for airfoils other than the S809.  The airfoils 

are from three different design families, including: S801, S810, S812, S813, S825, L303, 

LS(1)-0417MOD, and LS(1)-0421MOD.  The same test case is presented for each airfoil 

where Re = 1.0×106, k = 0.082 ± 0.006, αamplitude = 10°, and αmean = [8, 14, 20]°. 

 Finally, additional diagrams of the OSU experimental setup are included.  Figures A.21 

and A.22 show diagrams of the OSU 3x5 wind tunnel from Ramsay, et al. (1995).  

Figures A.23 to A.31 show the airfoil profiles for all airfoils modelled, available at 

<https://wind.nrel.gov/airfoils/OSU_data/>. 
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Figure A.1: CL and CD for the S809 Airfoil with time varying α, k = 0.033, Re = 0.75×106 
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Figure A.2: CL and CD for the S809 Airfoil with time varying α, k = 0.069, Re = 0.75×106 
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Figure A.3: CL and CD for the S809 Airfoil with time varying α, k = 0.100, Re = 0.75×106 
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Figure A.4: CL and CD for the S809 Airfoil with time varying α, k = 0.020, Re = 1.25×106 
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Figure A.5: CL and CD for the S809 Airfoil with time varying α, k = 0.040, Re = 1.25×106 
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Figure A.6: CL and CD for the S809 Airfoil with time varying α, k = 0.062, Re = 1.25×106 
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Figure A.7: CL and CD for the S809 Airfoil with time varying α, k = 0.018, Re = 1.40×106 
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Figure A.8: CL and CD for the S809 Airfoil with time varying α, k = 0.035, Re = 1.40×106 



www.manaraa.com

81 

 

 

          
 

Figure A.9: CL and CD for the S809 Airfoil with time varying α, k = 0.053, Re = 1.40×106 
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Figure A.10: CL and CD for the S809 Airfoil with time varying α, k = 0.026, Re = 1. 0×106 
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Figure A.11: CL and CD for the S809 Airfoil with time varying α, k = 0.049, Re = 1.0×106 
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Figure A.12: CL and CD for the S809 Airfoil with time varying α, k = 0.077, Re = 1.0×106 
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Figure A.13: CL and CD for the S801 Airfoil with time varying α, k = 0.079, Re = 1.0×106 



www.manaraa.com

86 

 

  

          
 

Figure A.14: CL and CD for the S810 Airfoil with time varying α, k = 0.082, Re = 1.0×106 
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Figure A.15: CL and CD for the S812 Airfoil with time varying α, k = 0.088, Re = 1.0×106 
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Figure A.16: CL and CD for the S813 Airfoil with time varying α, k = 0.083, Re = 1.0×106 
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Figure A.17: CL and CD for the S825 Airfoil with time varying α, k = 0.081, Re = 1.0×106 
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Figure A.18: CL and CD for the L303 Airfoil with time varying α, k = 0.078, Re = 1.0×106 
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Figure A.19: CL and CD for the LS(1)-0417MOD Airfoil with time varying α, k = 0.082, Re = 1.0×106 
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Figure A.20: CL and CD for the LS(1)-0421MOD Airfoil with time varying α, k = 0.082, Re = 1.0×106 
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Figure A.21: Diagram of the OSU 3x5 wind tunnel 

 

 

 

Figure A.22: Diagram of the OSU 3x5 wind tunnel pitch oscillation system 
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Figure A.23: S801 Airfoil Profile 

 

 
Figure A.24: S809 Airfoil Profile 

 

 
Figure A.25: S810 Airfoil Profile 

 

 
Figure A.27: S813 Airfoil Profile 

 

 
Figure A.29: NASA/Langley LS(1)-0417MOD  

 
Figure A.26: S812 Airfoil Profile 

 

 
Figure A.28: S825 Airfoil Profile 

 

 
Figure A.30: NASA/Langley LS(1)-0421MOD  

 
Figure A.31: L303 Airfoil Profile 
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APPENDIX B 

SUPPLEMENTAL INFORMATION ON UAE PHASE VI TEST 

BLADE 
 

 

Figure B.1: Photograph of the UAE Phase VI test turbine in the NASA/Ames wind tunnel 

 

Figure B.2: Diagram of the UAE Phase VI test turbine 
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  Figure B.3: Diagram of UAE Phase VI blade 

 

 

  Figure B.4: UAE Phase VI blade root 
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Table B.1: UAE distributed blade properties 

Radius 

[m] 
r/R 

Chord 

[m] 

Twist 

Angle [°] 
Airfoil 

0.000 0.000 -- -- Hub 

0.508 0.092 0.218 0.000 Hub/Cylinder 

0.660 0.131 0.218 0.000 Cylinder 

0.884 0.176 0.183 0.000 Cylinder 

1.009 0.200 0.349 6.700 Transition 

1.068 0.212 0.441 9.900 Transition 

1.134 0.225 0.544 13.400 Transition 

1.258 0.250 0.737 20.040 Transition 

1.343 0.267 0.728 18.074 Transition/S809 

1.510 0.300 0.711 14.292 S809 

1.648 0.328 0.697 11.909 S809 

1.952 0.388 0.666 7.979 S809 

2.257 0.449 0.636 5.308 S809 

2.343 0.466 0.627 4.715 S809 

2.562 0.509 0.605 3.425 S809 

2.867 0.570 0.574 2.083 S809 

3.172 0.631 0.543 1.150 S809 

3.185 0.633 0.542 1.115 S809 

3.476 0.691 0.512 0.494 S809 

3.781 0.752 0.482 -0.015 S809 

4.023 0.800 0.457 -0.381 S809 

4.086 0.812 0.451 -0.475 S809 

4.391 0.873 0.420 -0.920 S809 

4.696 0.934 0.389 -1.352 S809 

4.780 0.950 0.381 -1.469 S809 

5.000 0.994 0.358 -1.775 S809 

5.029 1.000 0.355 -1.815 S809 
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Table B.2: S809 Airfoil Data from OSU at Re = 750,000 * 

α 

[deg] 
Cl Cd Cm 

  

α 

[deg] 
Cl Cd Cm 

-180 0 0.3021 0   10.2 0.93 0.0274 -0.0321 

-170 0.235 0.3369 0.4   11.3 0.92 0.0303 -0.0281 

-160 0.47 0.4369 0.0233   12.1 0.95 0.0369 -0.0284 

-150 0.605 0.5886 0.0916   13.2 0.99 0.0509 -0.0322 

-140 0.578 0.7718 0.1385   14.2 1.01 0.0648 -0.0361 

-130 0.526 0.9617 0.1847   15.3 1.02 0.0776 -0.0363 

-120 0.437 1.132 0.2275   16.3 1 0.0917 -0.0393 

-110 0.312 1.2583 0.2626   17.1 0.94 0.0994 -0.0398 

-100 0.161 1.321 0.2857   18.1 0.85 0.2306 -0.0983 

-90 0 1.308 0.2936   19.1 0.7 0.3142 -0.1242 

-80 -0.161 1.321 0.312   20.1 0.66 0.3186 -0.1155 

-70 -0.312 1.2583 0.3152   22 0.7 0.3694 -0.1265 

-60 -0.437 1.132 0.3051   24.1 0.79 0.4457 -0.1488 

-50 -0.526 0.9617 0.2859   26.2 0.88 0.526 -0.1723 

-40 -0.578 0.7718 0.2641   30 0.864 0.5886 -0.1927 

-30 -0.605 0.5886 0.2507   40 0.825 0.7718 -0.24 

-20.1 -0.56 0.3027 0.0612   50 0.751 0.9617 -0.2808 

-18.1 -0.67 0.3069 0.0904   60 0.624 1.132 -0.3146 

-16.1 -0.79 0.1928 0.0293   70 0.445 1.2583 -0.3398 

-14.2 -0.84 0.0898 -0.009   80 0.23 1.321 -0.3553 

-12.2 -0.7 0.0553 -0.0045   90 0 1.308 -0.0334 

-10.1 -0.63 0.039 -0.0044   100 -0.161 1.321 -0.3787 

-8.2 -0.56 0.0233 -0.0051   110 -0.312 1.2583 -0.3819 

-6.1 -0.64 0.0112 0.0018   120 -0.437 1.132 -0.3719 

-4.1 -0.42 -0.0004 -0.0216   130 -0.526 0.9617 -0.3526 

-2.1 -0.21 -0.0003 -0.0282   140 -0.578 0.7718 -0.3308 

0.1 0.05 0.0029 -0.0346   150 -0.605 0.5886 -0.3174 

2 0.3 0.0056 -0.0405   160 -0.47 0.4369 -0.2723 

4.1 0.54 0.0067 -0.0455   170 -0.235 0.3369 -0.5 

6.2 0.79 0.0085 -0.0507   180 0 0.3021 0 

8.1 0.9 0.0127 -0.0404           

* Data from Hand, et al. (2001), extended to full 360° using Viterna extrapolation method in 

FoilCheck (Laino & Hansen, 2002) 
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APPENDIX C 

SUPPLEMENTAL WINDS SIMULATIONS OF UAE PHASE VI 

SEQUENCE S YAWED TEST CASES 
 

This Appendix contains supplementary figures for the data summarized in Tables 5.2, 

5.3, and 5.4 for UAE Phase VI Sequence S Yawed test cases modelled in WInDS.  Section 5.2.3 

shows results for 10 m/s with 30° and 60° yaw.  Cases at 10 m/s with 10 yaw, 13 m/s with 10, 30, 

and 60 yaw, and 15 m/s with 10 and 30 yaw are shown in this section.  Figures C.1 to C.6 show 

the distributed span-wise coefficients of normal and chord force.  Figures C.7 to C.12 show the 

total thrust and torque on a single blade and the total aerodynamic power for the rotor.  
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Figure C.1: Span distributed CN and CA for UAE Seq. S, 10 m/s, 10° yaw 
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Figure C.2: Span distributed CN and CA for UAE Seq. S, 13 m/s, 10° yaw 
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Figure C.3: Span distributed CN and CA for UAE Seq. S, 13 m/s, 30° yaw 
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Figure C.4: Span distributed CN and CA for UAE Seq. S, 15 m/s, 10° yaw 
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Figure C.5: Span distributed CN and CA for UAE Seq. S, 15 m/s, 30° yaw 
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Figure C.6: Span distributed CN and CA for UAE Seq. S, 15 m/s, 60° yaw 
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Figure C.7: Thrust and torque per blade and total aerodynamic rotor power for UAE Sequence S, 10 m/s, 

10° yaw 

 

 

 
Figure C.8: Thrust and torque per blade and total aerodynamic rotor power for UAE Sequence S, 13 m/s, 

10° yaw 
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Figure C.9: Thrust and torque per blade and total aerodynamic rotor power for UAE Sequence S, 13 m/s, 

30° yaw 

 

 

 
Figure C.10: Thrust and torque per blade and total aerodynamic rotor power for UAE Sequence S, 15 m/s, 

10° yaw 
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Figure C.11: Thrust and torque per blade and total aerodynamic rotor power for UAE Sequence S, 15 m/s, 

30° yaw 

 

 

 
Figure C.12: Thrust and torque per blade and total aerodynamic rotor power for UAE Sequence S, 15 m/s, 

60° yaw 
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